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Abstract

NUCLEATE POOL BOILING OF NITROGEN FROM ARTIFICIAL CAVITIES

Pool boiling heat transfer of nitrogen from artificial cavities

was investigated. Boiling was from circular, one inch diameter

horizontal mirror finished copper plates.

The single artificial cavity surfaces investigated were: a

drilled 0.00^3 inch diameter hdB^^^^y^d 0.015 inch diameter

hole, an 0.022 inch diameter spark cut cone, and an 0.006 inch diam-

eter spark cut cylindrical hole. The multiple cavity surfaces in-

vestigated were: seven 0.015 inch diameter drilled holes, thirteen

0.015 inch diameter drilled holes, and ninety-seven 0.003 to 0.00^5

inch diameter spark cut holes. The depth to diameter ratio was

about 2.5 for all drilled cavities.

The data from a mirror finished surface was compared to that of

previous investigations. Exponents for Yamagata's Equation for

boiling in the isolated bubble region were determined. The artificial

cavities were found to affect the natural convection heat transfer.

The size of the cavity appeared to have little effect after incipience

of boiling, and larger cavities than previously expected were found

to remain active.
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SECTION I

INTRODUCTION

1.1 Background - Liquid nitrogen and other cryogenic fluids have

been gaining a wide role in industry and research programs. Their uses

vary from space vessel fuels and gas separation techniques to electro-

magnetic coolers.

The characteristics of cryogenic fluids undergoing boiling vary

greatly from those of ordinary fluids. This is due, in part, to the

fact that the properties of both the cryogenic fluids and the heating

surfaces involved with them differ from those conventionally encountered,

The heat fluxes and temperature differences associated with boiling are

smaller and heats of vaporization are lower. Structural materials have

lower specific heats, giving rise to rapid temperature increases and

film boi ling.

Boiling heat transfer data is generally presented graphically with

log (OVA) as ordinate and log (AT) as abcissa where AT is the tempera-

ture difference between the solid surface in contact with the fluid (Tw)

and the fluid saturation temperature (Tsat). The data thus plotted

yields the familiar characteristic boiling curve (Figure 1) which has

the same shape for all fluids. There are four boiling regimes on this

curve, depending on heat flux and temperature difference of operation.

Natural convection occurs at low superheats (temperature differ-

ences) and is generally associated with low heat fluxes. The driving

force for fluid motion is due to the buoyant force created by a fluid

density change. The fluid expands as it is heated by the plate and

consequently rises. For large horizontal surfaces with natural con-
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vection the obtainable heat flux is proportional to the temperature

difference between the wall and the fluid bulk raised to the 1.25 to

1.33 power ( 1 )

.

Nucleate boiling is characterized by a sharp rise in the heat

transfer coefficient due to fluid agitation by rapidly growing and

departing bubbles. This regime is of the most practical importance

since it provides for the transfer of large amounts of heat with small

temperature differences. Almost all industrial equipment utilizing

boiling heat transfer is designed for operation in this regime.

Transition boiling is characterized by a lowering of the heat

transfer coefficient with increasing temperature difference. This is

an unstable region. Berenson (2) in his investigation found that the

liquid occasionally touches the surface but generally it is supported

by an unstable vapor blanket.

The stable film boiling regime is characterized by an orderly dis-

charge of large bubbles from the film at regular intervals. The heat

flux again increases with an increase of surface temperature, but at a

slower rate than in nucleate boiling.

1.2 Previous Research - Since the discovery of the characteristic

boiling curve by Nukiyama in 193^ there has been a great proliferation

of boiling heat transfer research.

In the nucleate boiling region many factors have been found to

affect the shape of the boiling curve. Among these are surface con-

ditions, contaminants, boiling history and boiler surface material.

Mead, Romie and Guibert (3) were among the first to suggest that

surface roughness or trapped gases on the surface would lower the
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superheat and change the boiling curve. Corty and Foust (4) investigated

boiling organic liquids using a transparent container. They noted

hysteresis effects and shifting of the boiling curve to give lower super-

heats. Griffith and Wallis (5) tried to correlate bubble size, shape

and frequency to the wall superheat required for bubble growth by their

studies of surfaces punched with needles. Bonilla, Grady and Avery (6)

investigated the effects of scratches and tried to correlate scratch

spacing to bubble size. Others investigated wetting agents, non-wetting

surfaces, gravity effects, etc.

Research in boiling cryogenic fluids has been more limited due to

the added problems associated with extreme cold and the lack of interest

until only recently. Class and others (7) studied boiling hydrogen heat

transfer from surfaces coated with grease and tilted at various angles.

Oxygen and nitrogen investigations were conducted by Lyon (8). Kosky

(9) boiled nitrogen over a wide pressure range from platinum plates.

Almgren and Smith (10) investigated roughened surfaces, boiling incep-

tion and hysteresis (the effect of past heating history on the boiling

curve) while boiling nitrogen from a horizontal plate in their investi-

gation of pressure effects. Other experimenters using liquid nitrogen

studied peak nucleate boiling flux and boiling from wires (11). The

forerunners of this current project, Maynard (12) and George (13) inves-

tigated the effects of surface contaminants (grease), different surface

materials, etched surfaces and single cylindrical cavities.

A correlation of nucleate boiling heat transfer based on dimen-

sional analysis and a surface variable constant was developed by Rohsenow

(14). Forster and Zuber (15) also produced a correlation based on non-

dimensional parameters. However, neither of these nor the many others
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that have been developed fully account for all the variables such as

dissolved gases, impurities, contaminants, and surface conditions. The

available data are scattered due to the large number of variables in-

volved making correlation very difficult.

The primary objective of this project was to investigate the effects

of cavity size and density on the characteristic boiling curve of liquid

nitrogen.
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SECTION 2

APPARATUS

2.1 System - The system used for conducting cryogenic boiling tests

was conceived by M. D. Maynard (12). It was designed with versatility

to cover a wide range of tests, including boiling at reduced pressures

and with the ability to eventually conduct boiling tests using liquid

hel ium.

Essentially the system consisted of an outer dewar, which contained

liquid nitrogen in this case. This provided an adiabatic inner chamber.

The inner dewar contained the liquid to be boiled; a tube and can

arrangement which contained the heater, test surface, and a temperature

sensing device was also immersed in the inner dewar. A primary vacuum

system was used to evacuate the tube and can to reduce heat losses and

a secondary vacuum system for pool environmenta 1 control . There were

various temperature and pressure sensing devices to monitor the systems

and to obtain the desired data.

Figure. 2 is a schematic of the system. A further description of

the system components designed by Maynard and George appears in refer-

ence (13)« The apparatus which was modified by this author is listed

below.

Three major modifications were made to improve the system; the

first two were made to improve the surfaces being tested and to elimin-

ate the need for electroplating them by providing a single piece test

surface and strengthening the diaphragm. The third modification was

made to provide more reliable thermocouple data by eliminating solder

joints.
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2.2 Boi ler Diaphragms - The boiler diaphragm shown in Figure 3 was

used to support the boiler in the boiler enclosure. It was a flat disc

made from Nickel 200 and was designed to provide for easy replacement of

boiler plates. George (13) initially designed these plates. It was

noted, however, that they tended to bend near the center when installed.

The inner portion, formally 0.023 inches thick was redesigned to 0.048

inches. This section was originally designed to be as thin as possible

to prevent heat loss due to thermal conduction horizontally from the

boi ler plate.

2.3 Boi ler Plates - The boiler plates were manufactured from elec-

trolytic tough pitch (ETP) copper. They consisted of a cylinder 2 3/8

inches diameter and one inch long which was machined for 0.835 inches of

its length to a diameter of 0.993 inches. In each case the top of the

plate, 0.165 inches long and 2 3/8 inches in diameter, was soldered on

its underside to the topside of the boiler diaphragm. The top was then

machined to a final thickness of 0.015 inches. Figure 3 shows this

assembly. The thickness was kept to a maximum of 0.015 inches to pre-

vent large horizontal heat losses.

The wide top was provided to eliminate the transition ring (solder

ring) which occurred in both Maynard's and George's boilers and to elim-

inate the need for electroplating them. Their test surfaces were de-

signed with the nickel diaphragm serving as part of the surface. The

boiler cylinder was soldered to the diaphragm at the top, thus, the test

surface consisted of three materials - copper in the center, a solder

ring, and nickel on the edge. Rogue nucleation sites existed in the

solder ring due to its porosity. George electroplated his surfaces with

copper to fill in the porous sections in order to eliminate these sites.
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The length of the small diameter section was selected so as to give

a reasonable temperature gradient between the boiler surface and the

bottom of the cylinder to allow accurate temperature gradient and, thus,

heat flux measurements.

Four thermocouple holes, spaced 90° apart, were drilled in the

lower part of the cylinder. They were 0.035 inches diameter and 0.^95

inches deep and spaced as shown in Figure k.

2.k Temperature Measurement System - Temperature measurement was

considered to be critical with highest degree of accuracy being required.

Thus, ISA type T copper-constantan thermocouples sheathed in stainless

steel (Sheath diameter = 0.035 inches) with special limits of error

were selected. The thermocouples were six feet long and each had a

grounded junction.

Metal sheathing was at first considered necessary in order to limit

outgassing in the thermal insulation vacuum system. However, normal,

small diameter, high grade glass insulated thermocouples would probably

be more satisfactory in that zero resistance (shorting) problems would

be reduced.

The thermocouples were rewired as shown in Figure 5. This was done

to eliminate stray emfs from soldered joints in the zone box.

The new system eliminated the zone box (an insulated container used to

keep all bimetallic connections at the same temperature) and rotary

switch and provided each thermocouple with its own reference junction.

Baker, Ryder and Baker (16) suggest using knife-edge switches in lieu

of a rotary switch and to eliminate all soldered connections. All copper

wire was attached to magnanin binding posts which have low thermal emfs,

and all constantan wires were wound together. After calibration

17



(Appendix A), four thermocouples were passed through the Conax gland and

into the boiler enclosure where they were coated with silicone vacuum

grease and inserted into the boiler plates to full depth (0.495 inches).

The fifth thermocouple was inserted in the liquid nitrogen about three

inches above the test surface to provide a check on the liquid bulk

temperature.

The knife switches were connected together and to a Leeds and

Northrup K-3 potentiometer by heavy copper thermocouple lead wire.

The five reference junctions were enclosed in plastic and inserted

in a sealed eight inch long oil -filled copper tube which was immersed

in a crushed ice-water bath. An ice-water reference junction was used

because it was more stable than any other convenient reference point.

The above temperature monitoring system was very satisfactory and

its inherent error was estimated to be less than 0.25° K (4.0 microvolts)

over long periods of time (twelve or more hours) and accurate to within

0.05 K over shorter periods.

Data was hand-recorded from the K-3 potentiometer using the null

method.
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SECTION 3

EXPERIMENTAL

3.1 Test Surface Preparation - After assembly of test surfaces, as

outlined in the previous section, each surface was cleaned with acetone.

The surfaces were prepared for testing as outlined below.

3.1.1 Mirror Finish - The boiler test surface was first dry sanded

using emery paper and then wet polished on several metallurgical wheels

in order to obtain a mirror finish surface.

A high speed belt sander (320 grit carborundum) was used to remove

all traces of machining. The sample was then rotated 90 and hand sanded

on dry emery paper, rotated 90 and sanded on dry 2/0 emery paper.

Final dry sanding was on 3/0 emery paper after again rotating the surface

90°. The sample was then washed with detergent and warm water to remove

all grit.

Wet polishing was accomplished on four inch Buehler metallurgical

polishing wheels. On every wheel the specimen was placed face down for

several minutes. It was then lifted, rinsed, rotated 180° and replaced

on that same wheel for several more minutes. Between wheels the specimen

was washed with detergent and warm water to remove the previous abrasive.

The first wheel was canvas covered and used a 600 grit carborundum-water

suspension as abrasive. The second wheel was covered with felt and used

an alumina-water suspension as abrasive. The third wheel was covered

with kitten ear , a felt-like material, and used one micron gamma-alumina

in water as an abrasive. The last two wheels were covered with velvet.

They were impregnated with three micron and one micron diamond dust,

respectively. For these wheels, methanol was used to wet the surfaces.
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After completion of the pol i shi ng, the sample was washed with methanol

and wrapped in lens paper to prevent contamination.

All surfaces with artificial cavities were mirror finished before

the cavities were made and were repolished on the last two wheels after

work was completed. This was done to insure that defects incurred in

the manufacturing process were not responsible for the change in the

boi 1 i ng curve.

3.1.2 Cylindrical Cavities - Several plates were made with artifi-

cial cylindrical cavities to investigate their effect on the boiling

characteristics. Both the density and hole size were varied in several

different boiler surfaces.

Cavities were drilled using Sphinx spirec pivot drills in two sizes,

0.0043 inch diameter and 0.015 inch diameter. The depth of the cavity

was controlled by using a feeler gauge on the lathe.

A cavity depth/diameter ratio of approximately 2.5 was desired.

Thus, the 0.00^3 hole was drilled to a depth of between 0.012 and 0.015

inches. The 0.015 inch holes were between 0.035 and 0.040 inches deep.

Two plates were prepared with single cavities of the above sizes.

Later, an additional plate was made with seven 0.015 inch holes, one in

the center of the plate and the other six equally spaced on a ^ inch

diameter circle concentric to the plate. The holes were thus spaced 1<

inch apart. This plate was then tested as outlined below and returned

for the placement of six additional holes. The thirteen holes were

equally spaced 0.1^5 inches apart. Figure 6 is a sketch showing the

final hole placement.

One of the original seven holes was damaged in manufacture. A drill

was broken in the bottom of the hole about 0.025 inches from the mouth.
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A second hole was drilled at an angle through the top of the original

hole. This slightly enlarged the mouth of the cavity and the internal

imperfections caused it to boil differently than the others (it produced

smaller diameter bubbles at higher frequency).

Cylindrical cavities were also spark cut into the test surfaces.

The Servomet spark cutter manufactured by Metals Research Ltd. was

used in this process. A single cavity with estimated mouth diameter

0.003-0.004 inches and estimated depth of 0.010 inches was placed in

the center of a boiler plate by using an 0.0016 inch Sphinx flat pivot

drill (manufactured by Levin and Son, Inc.) as an electrode. Drills

were chosen as electrodes because of their relatively high stiffness

and ease of handling as compared to similar sized wire. The drill ex-

tended from a shank with a diameter of 0.040 inches. The shank was

placed in a specially made tool where it was held with a set screw.

The electrode was allowed to penetrate to a depth of 0.012 inches.

The depth of electrode penetration was controlled by using the machine's

depth gage micrometer attachment. The spark gap control was set on

number seven, the finest spark the machine can produce. The dielectric

in the spark cutter was freshly filtered kerosene.

Ninety-seven holes were simultaneously spark cut into a plate using

the above-mentioned electrodes and spark cutter. The holes were uni-

formly distributed within a 0.990 inch diameter circle. This provided

a hole center-to-center spacing of 0.095 inches. Figure 7 is a sche-

matic of the hole layout.

A special tool was manufactured to hold the ninety-seven drills in

place and at equal distances from the surface. A 2'-^ inch diameter,

0.600 inch thick plate was cut from naval brass bar stock. The piece
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was drilled straight through at the hole locations using an 0.030 inch

drill. The piece was then drilled and tapped for machine screws. It

was sectioned through its thickness into two parts, one 0.350 inches

thick, the other 0.250 inches thick. The holes in the thicker section

were redrilled to 0.0^0 inches diameter. The two pieces were then

fastened together using machine screws at the previously placed taps.

This procedure insured that the holes in the two plates were coincidental.

The Sphinx drills were forced into the 0.040 inch holes and were bottomed

off center in the 0.030 inch holes. The drill tips were not allowed to

touch either plate as they are very easily broken off. After completion

of insertion the drill shanks were soldered into place in the 0.350 inch

thick plate. After soldering it was found that the drills extended to

somewhat different lengths from the plate.

In order to insure that the test surface and electrode plate were

parallel, an electrical contact test was used. Two brass screws 180

apart were set into the electrode surface near its outer edge. They

were set so that they stuck out equal distances from the electrode sur-

face. Electrical lead wires were then attached to the screws and to an

ohmmeter. The plate was fastened to an end of a 5 x ^ x '^ inch arm

which was then clamped into place on the spark cutter servo drive. The

test plate was placed directly below it on the support stand. The servo

was then driven down until one of the set screws touched the test sur-

face (the spark cutting machine shuts off when pressure is applied to

the electrode). The electrode plate was then moved until a short was

indicated on the ohmmeter (both screws touching the test surface). It

is estimated that the plate and test surface were parallel to within

- 0.001 inches.
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3.1.3 Conical Cavity - A conical cavity was placed in a test sur-

face by using the spark cutter described above. In this case the elec-

trode was made from a 1/1 6 inch steel rod turned down to 0.015 inches

diameter and tapered at the end. The tapered section was 0.060 inches

long to give the desired hole depth of 0.035-0.040 inches. The hole

thus made was not truly conical, as the bottom had a fairly large radius

of curvature.

3.2 Test Surface Installation - Immediately before installation in

the test rig all plates with cavities were put in an ultrasonic cleaner

for several minutes, after which they were washed with water, rinsed

with ethanol and dried.

A test surface was placed on the boiler can where heater leads,

thermocouple junctions and teflon seal were installed. Silicone vacuum

grease was put into the thermocouple holes to insure good thermal con-

tact. The thermocouples and heater leads were then checked with an ohm-

meter to insure that there were no short circuits. The test surface was

then secured to the can by eight 3/16 inch stainless steel studs which

were torqued to a maximum of ten inch-pounds (Figure k) . It was found

that higher torques warped the plate at the thin nickel ring-copper

cylinder junction (Figure 3) causing a small ring to appear on the test

surface. This "stress ring" was found to be a source of rogue nucle-

ation sites.

The vacuum system was then started. If, after several minutes the

pressure had not dropped to 10 mm Hg, there was a leak. Tests were

not conducted on any surfaces where the pressure exceeded 1
J mm Hg.

In such cases the test rig was disassembled and the teflon seal replaced,

In every case of excessive leakage, upon opening of the can, one found
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that the teflon seal had ripped. After obtaining a satisfactory vacuum,

the two dewars were mounted and filled with nitrogen. The outer dewar

was filled to within one inch of its top; the inner one was filled to a

depth of about 20 cm.

3.3 Testing Procedures

3.3.1 Reproducibility and Q/A vs. (Tw-Tsat) Curves - Initial testing

was performed with mirror finish plates to determine the best procedures

for obtaining reproducible data. Among the factors varied in these runs

were liquid depth, amount of preboiling (degassing), time interval be-

tween power level changes, and power level increments.

Observations from these tests led to the development of the follow-

ing test procedure for obtaining heat flux versus temperature difference

data.

TABLE 3 - 1

Initial Liquid Depth 20 cm

Preboiling Time 15-20 minutes
(in order to obtain 16 cm
depth at start of run)

Preboiling Power Level 62.5 watts

Cooling Down Time 15 minutes

Power Levels for Run 0.6, 1.25, 2.5, 4.0, 5.6,

7.5, 10.0, 12.5, 15.6, 18.0,

22.5, 40.0, 62.5, 90.0 watts

Time Interval between 7 minutes
Power Level Changes (5 minutes plus 2 minutes to

take data)

3.3.2 Boiling Only from Artificial Cavities - After some experience

was gained in running the tests and observing numbers of active sites,

it was found that there was, with the 0.015 inch cylindrical holes, a

wide range of power levels where, only the artificial cavities were active,
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It was then decided that a Q/A vs (Tw-Tsat) curve could be established

for these plates with fixed numbers of nucleating sites.

Thus, immediately after taking the last data for the previously

described test, the plate was allowed to come to equilibrium with power

input of 10 watts. After five minutes the power was lowered slowly to

the point where the artificial cavity sites appeared to be on the brink

of snuffing out. The power level was then raised to the next highest

power level listed in the previous subsection. The procedure outlined

there was then followed until natural sites became active, at which point

the test was discontinued.

3.*+ Microscopic Examination of Surfaces - After completion of the

runs, the plates with spark cut cavities were brought to the metallur-

gical laboratory for examination. The holes were examined under the

microscope to determine their shape and size. The single cylindrical

cavity had a mouth diameter of 0.007-0.008 inches; the 97 holes were all

approximately 3*0-4.5 thousandths across their largest dimension. How-

ever, their shapes varied considerably. Crescents, ovals, circles and

some completely irregular shapes were observed. Several of these holes

appeared to be nothing more than shallow surface scratches as the bottoms

were not out of the depth of field when examining the mouth by looking

straight down onto the test surface. The shallow holes were probably

caused by inconsistent drill lengths extending from the plate. The

irregular holes were probably due to solder dripping through the plate

and hardening on the drill tips. Figures 8 and 9 ar& photographs of a

typical hole mouth and a cross section.

The conical cavity had a circular mouth 0.022 inches in diameter.
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Unfortunately this cavity was accidentally destroyed during sectioning,

and no measurements could be made of its internal geometry.
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SECTION k

RESULTS

Nine different surfaces were tested. A total of twenty-three runs

were made, most of them being with mirror finish plates. The large

number of mirror finish runs were necessary in order to eliminate boiling

from the "stress ring," to find the conditions for obtaining reproduc-

ible results, and to determine how various factors such as depth of

liquid, number of data points and time interval between data points

affected the Q/A vs (Tw-Tsat) curves.

4,1 Natural Convection - Many of the data points taken were in the

natural convection region. This was originally planned so that the

experimenter could observe the boiling inception point.

It was later observed that the natural convection data did not

fit the equations developed for horizontal flat plates (1) nor was it

consistent from one run to another. Several exponents were calculated

from the data plotted in Figures 12 through 19. They were found to vary

from 1.1 to 1.45. Several reasons for this behavior may be postulated.

First, the equations normally used for flat plates were developed using

large sheets (about six feet long). The plates used in these tests were

very small (2 3/8 inch diameter) and were heated only in the center (one

inch diameter). Natural convection correlations for small horizontal

surfaces were not found in a literature search.

Secondly, two distinct types of convection modes were observed.

Normally, the fluid seemed to sweep across the plate, first from one

direction, then another. The heated liquid would then rise near the

edge of the plate, and the process would begin again. In the second mode,
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observed in only three of the runs, the liquid would sweep across the

plate rising near the center. In this process the motion was not ran-

dom - the liquid appeared to always travel in the same direction, pro-

ducing a chimney effect. It would be expected that this second type

would produce higher heat transfer coefficients due to the increased

movement of liquid across the plate.

The third factor involved in the data scatter is the increased

percentage of heat flux uncertainty in this region due to the very small

temperature drop across the copper cylinder at low heat velocities.

It was noted on the curves containing a single cavity that there

was a step increase in the heat flux as the inception point was approached,

The natural convection data plotted in Figure 15 through 19 is approxi-

mated by a straight line. Figure 10 shows two curves plotted with this

jump considered. There is presently no explanation for this phenomenon.

k.2 Hysteresis - Hysteresis is the effect of past heating history

on the boiling curve. Several modes of hysteresis were observed in these

experiments.

When a mirror finish surface was preboi led and cooled for fifteen

minutes and then a run was made at a fast rate, a high degree of super-

heat could be achieved before the incipience of boiling. In this type

of run the waiting time between data points was two to three minutes and

very little time was spent in the natural convection region. The super-

heat would decrease upon a further increase in heat flux when at the

incipient point. This phenomenon was also observed by Corty and Foust

(k) , Almgren and Smith (10) and others (12, 13, 17). Both Corty and

Foust and Almgren and Smith explain this as being due to a lack of

trapped vapor in the cavities of the surface. The extent of this
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hysteresis was dependent on the amount of vapor trapped in the surface

cavities.

When runs were made with the same specified preboiling, but with

45 minutes or more spent in the natural convection region, none of this

type of hysteresis was observed.

A second type of hysteresis was noted after initiation of boiling.

On increasing heat flux it was observed that if power input was held

constant for a long period the temperature difference decreased. When

decreasing heat flux the temperature difference increased. Figure 11

is a plot of two typical points showing their movement in detail.

Figure 12 compares two runs made using the same surface but with dif-

ferent time intervals between points. The above hysteresis occurred at

every data point. The maximum time spent at any point while observing

this motion was 90 minutes. At that time very little movement could be

seen,

Kosky (9) and others (10, 18) also noted this phenomenon on increa-

sing heat flux. They attributed it to an increase in the number of

active sites over the observation time period. Correspondingly, when

the heat flux is decreased the extra sites formed at high heat fluxes

slowly deactivate, causing the (Tw-Tsat) to rise. As can be seen in

Figure 11 the two points seem to converge toward one curve. BonMla

et a 1 . (6) found that it took two hours or more for a point to become

absolutely constant when testing with water.

The third type of hysteresis observed was: on descending heat flux

curves, lower heat fluxes could be achieved while still maintaining

active sites than when starting with no nucleating sites. The. extreme

cases were noted with the 0.015 inch mouth diameter cavities. This
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hysteresis was due to there being present in the cavities vapor nuclei

which continued to nucleate. Apparently very little superheat is re-

quired for a cavity of this size to nucleate once a vapor nucleus has

been formed.

4.3 Reproducibi 1 ity - Using the procedure outlined in the previous

section, two mirror finish surfaces were run. The results are plotted

in Figure 13. Although there is excellent agreement in the boiling

region, there is a wide discrepancy in the natural convection curves.

The mirror finish results in the boiling region are compared to Maynard's

and Almgren and Smith's mirror finish results in Figure ]k. Their sur-

faces were of the same material and approximately the same geometry.

Differences in the curves can be seen but are slight. They are probably

due to the use of different procedures. For example, Almgren and Smith

took their data while decreasing flux, staying kS minutes at each point.

k,k Single Cylindrical Cavities - The data from the runs using

single cylindrical cavities are plotted in Figure 15. In the natural

convection region there is a large spread from one size cavity to another

It should be noted that the curves tended to move upward as cavity size

increased. The 0.015 inch drilled hole had the highest heat transfer

coefficients in this region while the mirror finish had the lowest.

The size of cavities affected the natural convection data, probably by

disturbance of the boundary layer.

Boiling inception occurred at essentially the same heat flux and

temperature difference for all of these cavities. It occurred at about

the same temperature difference as the mirror finish, but at a higher

heat flux. This was contrary to the expected result, as predicted by

Griffith and Wallis (5), that the larger cavities would activate at
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lower temperature differences. Several reasons may be postualted to

explain this observation. First, the artificial cavities may not have

been the real active sites. That is, a smaller cavity may have existed

within the holes. The bubbles growing from this smaller cavity would

fill the larger cavity with vapor, thus, activiating it. Secondly, as

both Hsu (19) and Bergles and Rohsenow (20) point out, the thermal

boundary layer thickness and fluid velocity play an important role in

the size range of the active nucleation sites and consequently the super-

heat at boiling inception. Considering the natural convection patterns

observed experimentally in this investigation (that is, increased heat

transfer coefficients with artificial cavities, the sudden jump in heat

transfer coefficient for some surfaces, and the intermittent "chimney

effect") the thermal boundary layer thickness could have varied consider-

ably, thus yielding the observed results.

Upon inception, for all but the smallest cavity (spark cut hole)

the first bubble came from the hole and a patch developed around it.

The patch, upon increasing heat flux, spread across the rest of the sur-

face. From previous studies (5, 19) it was felt that large cavities

(such as 0.015 inch diameter) would not activate first. Thus, upon

completion of the run with the large hole, tests were conducted to deter-

mine if this cavity always activated first. It was found that the hole,

under identical conditions, could be deactivated about 50% of the time.

In the nucleate boiling region, at the lower heat fluxes, the

cavities appear to lower the temperature difference by about 0.5°K.

The two curves then become closer, and at the final data point they are

coincident. The slope of the curve for plates with cavities is lower

than the slope of the mirror finish curve. This indicates that the
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effect of the cavity on the boiling curve becomes less and less as more

sites become active. The merging of the curves and the change in slope

was also noted by several other authors (5, 6, 10, 12).

4.5 Conical Cavity - The 0.022 inch diameter conical cavity results

are plotted in Figure 16 along with the single 0.015 inch cylinder and

the mirror finish results. In this case, as above, the natural convec-

tion data for the larger cavity has the highest heat flux for a given

temperature difference.

At the incipient point the conical hole did not activate first.

A patch near the center of the plate spread over the hole and activated

it. At incipience there was a very slight amount of hysteresis. Above

the incipient point the conical cavity curve is to the left of both the

mirror finish and the single 0.015 inch cylinder curves. This was ex-

pected since the conical cavity was larger than the cylinder (5). These

curves converge at the upper limit of the data. As noted previously,

these curves are not as steep as that for a mirror finish.

k.6 Multiple Spark Cut Holes - Figure 17 presents the results from

the run with the 97 spark cut holes and compares it with the results

from a single spark cut cavity.

The multiple cavity surface had higher heat transfer rates than the

single cavity in the natural convection regime. Again this supports the

idea that surface discontinuities affect heat transfer rates in this

region.

As in the case of the single spark cut cavity, none of the 97 holes

appeared to be activated prior to the development of a small boiling

patch on the surface. The single cavity curve shows a 0.5 K lower tem-

perature difference than for the 97 holes in the lower part of the
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nucleate boiling curve. This was not expected. It is believed that the

lack of depth and irregular shape of these holes (see Figure 8 and 9)

have caused the data to be unreliable.

^.7 Multiple Drilled Holes - Two runs were made with each plate con-

taining multiple holes. The first was to obtain data for plotting a Q/A

vs temperature difference curve similar to those previously discussed.

The second, with a fixed number of boiling artificial cavities, was to

obtain data for plotting a Q/A vs temperature difference curve and to

obtain data for determining an exponent for (n/A) in Yamagata's (22)

equation,

C/A = Q (AJf\VA)
to

where AT is (Tw-Tsat) and C ? is a constant.

The data from the first run with each plate is plotted on Figure 18

along with the data from the single 0.015 inch cylindrical cavity.

Again, in the natural convection region an increase in the number of sur-

face discont intuities increases the heat flux for a given temperature

di fference.

At the incipient point the temperature difference for multiple

cavities was about 0.75 K lower than for the single cavity and the heat

flux was considerably higher. This may have been due to the previously

mentioned thermal boundary layer and fluid velocity changes that oc-

curred with different surfaces. The plate with the largest number of

cavities had the highest heat flux at incipience.

Boiling began from two artificial cavities on the plate with seven

holes. Upon increasing the heat flux the five other holes began nuc-

leating. Shortly thereafter a patch developed in the. center of the plate,
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A further increase in heat flux caused the patch to spread across the

entire heated area. The plate with thirteen holes began nucleating from

the center hole. An increase in heat flux started a small boiling patch

around this hole and activated the other twelve artificial cavities.

Upon a further increase in heat flux, the area including the inner seven

holes, a circle of approximately 0.1^5 inch radius, boiled as a patch

with the six outer holes also nucleating. Only during the last three

data points in this run was there full boiling across the heated area

(this also applies to the run with seven holes). For all other plates,

at least the last five data points were for full boiling.

As noted previously the nucleate boiling curves converge as heat

flux becomes high and the total number of active sites makes the effect

of the few artificial cavities insignificant.

Figure 19 presents the data from the runs where a fixed number of

cavities was active. On this curve is shown also the natural convection

data obtained from these plates (dashed lines). It can be seen that the

presence of the nucleating cavities has raised the heat flux for a given

temperature difference. The amount of this rise increased with the

number of active sites. It was observed that while there was a wide

range of heat fluxes and temperature differences where one and seven

cavities remained active, there was no point on the plate with thirteen

holes where all thirteen cavities alone could be kept active. The point

shown in Figure 19 is for ten active cavities. It was taken on a des-

cending heat flux curve and it is not considered valid to compare this

point to the other curves. Higher heat fluxes started patches boiling,

lower fluxes deactivated some of the cavities. This particular surface

was extensively dry sanded after the placement of the first seven holes
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and again after the placement of the additional six holes, due to the

presence of large burrs and scratches incurred in the drilling process.

This regrinding may have had an effect on the boiling characteristics

of the plate.

Yamagata and Nishikawa (22) proposed that

Q <* AT
a

ir (2)

By fitting experimental data they found some values for a and b. Other

experimenters (21, 23) modified some of the assumptions and the approach.

They obtained different values for these exponents. A check on these

values was made (Appendix C) using data from the one and seven active

cavity runs. Table k-] compares these to the others that were obtained.

The results are in good agreement with those previously obtained. Figure

20 is a plot of the data from these two runs and shows the curves ob-

tained using the calculated exponents and constant. The equation used

to plot both of the lines shown in Figure 20 was:

, 136 0.272

Q = 0.338 (ATj (/n) (3)

TABLE h -
1

COMPARISON OF EXPONENTS FOR THE YAMAGATA EQUATION

Author Exponent "a" Exponent "b'

Moulson 1.36 0.272

Yamagata (22) 1.50 0.250

Zuber (23) 2.0 0.250

Tien (18) 1.0 0.500
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SECTION 5

CONCLUSIONS AND RECOMMENDATIONS

The results lead to the following conclusions:

1. Artificial cavities affect the natural convection heat flux

curve of liquid nitrogen.

2. 0.015 inch diameter cylindrical holes, larger cavities than

previously expected, appear to remain active while boiling nitrogen.

3. Single cylindrical cavities of various sizes have the same

effect on the boiling curve after incipience. The mirror finished sur-

face heat transfer coefficient was raised by the same amount in each case,

^4. Boiling heat flux in the isolated bubble region is proportional

to the number of active sites raised to the 0.272 power.

5. The boiling curves for the surfaces tested merge toward the

mirror finish boiling curve at high heat fluxes.
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The following recommendations ere made for future boiling investi-

gations and equipment modification;

1. Study more intensively the effect of surface conditions on

natural convection and the boiling inception point.

2. Continue the present studies with different size cavities and

cavity densities. Cavity sizes between 0.004 and 0.015 inch diameter,

and some larger than 15 thousandths mouth diameter should be studied.

Determine the maximum size a cylinder may reach and still remain active.

3. Investigate in more detail the boiling curves which can be

obtained with fixed numbers of boiling cavities.

k. Study the effects of different cavity geometries (such as

conical and reentrant) to determine which types of cavities remain active,

5. Enlarge the boiler can to permit easier assembly.

6. Change the thermocouples to glass-insulated types soldered into

the boiler cylinders and connected to leads in the can with plugs.

7. Install plugs for all electrical connections in the boiler can.

8. Devise a method to prevent thermocouple leads from receiving

heat from the heater or heater wires by conduction or radiation.
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9. Lengthen the boiler cylinder and change the material to a type

with lower thermal conductivity to allow installation of at least one

more thermocouple and to give higher temperature drops across it in

order to obtain more accurate results.
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APPENDIX A

THERMOCOUPLE CALIBRATION

Because a high degree of accuracy was desired, it was felt that all

the components of the temperature measurement system should be thoroughly

checked for reliability as well as accuracy. Direct instrument checking

against secondary standards was chosen as the best means to achieve conven-

iently and cheaply the desired accuracy.

The measuring instrument used was a Leeds and Northrup K-3 Potentio-

meter. It was checked several times daily over a two week period with a

standard cell of 1.019^ volts. No variation was ever noted. The instru-

ment, when last calibrated by the manufacturer, was found to be accurate

to within 0.2 microvolts, or 0.01% of the reading, whichever is larger.

Before calibrating the thermocouples, they were checked for reliabi-

lity. This was accomplished by observing over a period of time the read-

ings obtained using the ice-water equilibrium point as reference and in-

serting the thermocouples in boiling nitrogen. Readings were obtained

over a five-day period during which seventeen observations were made.

The difference between maximum and minimum readings for any thermocouple

over this time span was 4.0 microvolts. Calibration of the thermocouples

was then accomplished by using the following known points?

(1) boiling nitrogen - melting ice

(2) boiling argon - melting ice

(3) boiling argon - boiling nitrogen.

The recorded emfs were the inputs to a computer program developed by NBS

Cryogenic Laboratories at Boulder, Colo. (2k), The program was purchased

at cost from NBS by Maynard (12) who adapted it to Fortran 60 for use at
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the Naval Postgraduate School. Due to a recent change in computers and

computer language, this author converted the program to Fortran IV

language. The program compared the spot calibration points to the NBS

calibration table, computed a correction factor and then generated a

working table for the range 0° to 300°K using any desired reference

temperature in that range. A copy of the program and a sample working

table are Appendix B. Each thermocouple was individually calibrated and

a working table was obtained for each using the three calibration points

(a total of fifteen working tables).

The tables constructed from the melting ice-boiling nitrogen data

were chosen as the final working tables. The data was consistent and

these were the points to be used in making the runs. Table A-l is a

summary of the calibration data. Table A-2 compares the calibration

results. Figure 21 is a sample temperature versus emf curve made from

this table. It was used in reducing the data.
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TABLE A-1

THERMOCOUPLE CALIBRATION SUMMARY

Thermocouple

1

2

3

4

5

1

2

3

4

5

LN2 - ICE

EM£(/UV)

5486.1

5487.2

5487.4

5487.1

5487.2

LN2 - LA

167.9

168.1

168.7

168.7

168.5

Factor

0.99211

0.99231

0.99234

0.99229

0.99231

0.99250

0.99368

0.99723

0.99723

0.99604

LA - ICE

5320.9

5321.2

5320.4

5321.3

5321.2

0.99260

0.99265

0.99251

0.99267

0.99265
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TABLE A-2

COMPARISON OF CALIBRATION DATA

LN2 reference was used for this comparison

Thermocouple #1

Temp (°K)

80

85

90

95

100

Thermocouple #2

Thermocouple #3

LN
2
- ICE LN

2
- LA LA - ICE MAX diff

emf f>uv) emf (MV)

43.6

emf (MV)

43.6

°K

43.6

128.0 128.1 128.1 0.0063

215.9 216.0 216.0 0.0063

307.0 307.1 307.1 0.0063

401.4 401.6 401.6 0.0128

80 43.6 43.7 43.6 0.0063

85 128.0 128.2 128.1 0.0125

90 216.0 216.3 216.0 0.019

95 307.1 307.5 307.2 0.025

100 401.5 402.1 401.7 O.038

80 43.6 43.8 43,6 0.0125

85 128.0 128.7 128.1 0.044

90 216.0 217.0 216.0 O.O63

95 307.1 308.6 307.1 0.094

100 401.5 403.5 401.6 0.125
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Thermocouple #4

LN2- ICE LN2-LA LA - ICE Max Diff

Temp (°K) emf emf

43.8

emf

43.6

°K

80 43.6 0.0125

85 128.0 128.1 128.1 0.044

90 216.0 217.0 216.0 0.063

95 307.0 308.6 307.2 0.094

100 401.5 403.5 401.7 0.125

Thermocouple #5

80 43.6 43.8 43.6 0.0125

85 128.0 128.5 128.1 0.031

90 216.0 216.8 216.0 0.050

95 307.1 308.2 307.2 0.068

100 401.5 403.0 401.7 0.094
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APPENDIX B

THERMOCOUPLE CALIBRATION PROGRAM
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TABLE B-1

THERMOCOUPLE DATA

Qm
<\i

OO
UJO
en •

4roo
CO >t

U_ro,

•o •

o
Z>~ UJ
t—ua

I <rz>
Q-U-f-
K <
LUt— Lb©—lO-l/l

HO
< • 3l

<z:ao
•OIL)
• en

H-ILU
LOH-U.P"-

1/5

>COLULO

LUQi t3
Q. •<
a •

On fo

' Q. UJ

Ct 31-

a.a o
4J<rot-

<r<i #-

l/)CQ

LU •—

-JLL—I
0-O<
r> O
a •

ocelli
^J ) -—

.

*

a I

lu »rM
Xt-Z

2.

O
Q«v
,,v>
.LU

QU

a.

LL
-JO
UJ>-*

OS

xo
LU"-

1

LUO

o
•O

Q"

UJ

LL

LU

LU—

>
LL

XO

LUO
h-UJ
Q

corrioornr^
tnooornun

• • • • •

^r-4<\IC\|(\J
<\lt\jrg<\j<\j

.—ir-tr\ir\if\j

(M(\ir\if\if\i

o^cc cnoro

f\) *f vOO >-<

mtnf»-o<\i
ao CO 00 aocr

<\l(\J<-\|r\Jr\|

4nOCCO^s»-4-
—t-iS-OO-^^
r*-coo-4cvj

vO «o \0r~*^-

• • • • •

(NiO^cOONO•!••
o«omqcD

ac oo od caco

cootviLor—
«r«oh-cooN
• • • • •

^m^cco
eg <n eg r\j c\j

r\j(\if\j«\j<\i

r0voco^<
«t WD €D <-• r<S

vOf-oooa
rvj fsj rsj f\i rq-
-^ —< ,—. —^ ,-J,

s0 00Of\l>J*

rOiAiOr-Oi
t • : • • 4

>m.moo

Lf>(NOao>Ot

~* -* •* i-* r\i

>or-<oc7>oi
coooodooch

vCooo^O'-^

• »••
COCOCOijOOO

4.
• • • • •

is. oo CD 00 CO

• • • • •

rf>c\Jo<»r^
fViir>h-toO
rvjt\j(M(Njro

• • • • #

mrorofneo
<Mrvi(Mfg(M

romm ro ro
rvj <\j r\j t\i <\j

vOO^fMO—

^

iTicoocvjin

-^(Mro^Ln

>0 <-m <o •-< «o

fs.opc>^N
• » t • •

<\j<\ir\j<\j<\i

r^uMTMnxO

>tatx\jvOO

—<—4<\jrg«\i

L

sor^cooQ

c>rliLor^O
vOOtJO^OtM
• » •

oocoaocr^

vOCCCO"^
• » • •

00 0$ 00

fOv^vCr^ao
• • t • t

<\lf\Jf\J(NfM

ro«^-L^f^oo

c\jr\j(\irvj(\j

O^rOOOinpo

^Omcorri

sosjrOrOrom

C1 O 0> s
CT»

sm^vO-oco
• • » • •

(O O O <T>O

u
•

• • » • •

iooc^cro

OOOOO

52



APPENDIX C

SAMPLE CALCULATION WITH ERROR ANALYSIS

Assumptions

1. The liquid nitrogen and ice used in calibration were of the same

purity as that used in runs.

2. The effective thermocouple junction positions were known to

_ 0.010 inches due to uncertainty in location of the junction in the

sheathing and ± 0.003 inches uncertainty in location of thermocouple hole,

3. Barometric Pressure was accurate to - 0.05 mm Hg.

4. Thermal conductivities of copper were within 5% of the reference

curve (Figure 22).

5. Measured nitrogen depths were accurate to within 0.2 centimeters,

6. Thermocouple working tables accurate to - 0.1 ji\l't thermocouple

readings accurate to -0. ]JA\I and thermocouples reliable to - 4.0yUV, or a

maximum uncertainty of 4.2 itV per reading.

7. The objective of the error analysis was to determine the prob-

able error in the results.

The data used is from point eleven of run thirteen (0.0043 in. dia.

cylindrical hole).

TABLE C-1

THERMOCOUPLE DATA

T. C . Location (inches) Location (cm) Temp (°K)

1.735 - 0.027 84.11 - .24

1.360 t 0.027 83.70 ± .25

0.975 - 0.027 83.36 - .25

0.519 - 0.027 82.97 - .25

1 0.684 - 0.010

2 0.534 - 0.010

3 0.384 t 0.010

4 0.204 t 0.010
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Surface Temperature and Heat Flux

In order to determine heat flux and surface temperature, the tem-

peratures of the four thermocouples were plotted against distance from

the boiling surface. The Fourier heat conduction law governs this

situation: since this was a steady state conduction problem, a linear

plot of temperature vs distance was expected and observed.

Q/A - k d^x
(c-i)

Figure 23 is a plot of the four temperatures listed in Table C-1

versus distance from the surface. The best line was determined by the

eyeballing method. The surface temperature was determined by extra-

polating this line to the vertical axis. Error limits showing the

maximum uncertainties in temperature and distance are shown on this plot.

The most probable error in a single data point in Figure 23 is con-

sidered to be less than the maximum error limits shown, especially in the

temperature measurements. The reason for this is that the error limits

for temperature were derived from observing thermocouple reading varia-

tions over a long period of time and recording their fluctuations. The

fluctuations were slow, with minimum and maximum readings occurring 12-20

hours apart and, they appeared to be more or less ambient temperature

dependent

.

From observing the deviations in this plot and others similar to it,

the author considers reasonable a probable uncertainty of - 0.1°K, shown

as the shaded area about each data point in Figure 23.

By drawing straight lines through the extremes of these error boxes,

an estimate of the most probable error was made. The results are shown

in Table C-2.
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TABLE C- 2

SUMMARY OF 1ERROR DATA

Tw (°K) dT/dx

82.50 BEST 0.9^

82.65 MAX 1.06

82.3^ MIN 0.81

This may be expressed as: Tw = 82.50 t . 15°k and dT/dx = 0.9^ - .13 °K/cm.

For the determination of heat flux error, the following was used:

Q/a= k d7dK

4M- 4M+ <*(*&)

For the root mean square error:

Substi tuting,

>£p-i/M+mQ/a H (C-3)

or

A (%) _
w-yto+ffi)

A(%) _
Q/A

= 0.14-75

% = 4-.80 ± 0.709 "^m*
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Saturation Temperature

The depth of nitrogen above the boiler surface was kept between 12

and 16. centimeters. An average of \k cm was used for determining

static pressure head.

P v U (c - /t '

/head = 6 n
- (so.<ti(a±Z\(-L. \(160 )

= 8.32 ±1,13 mmH$
&RT*= 762.3+ .05-766 mmH3

- 10. (,2 ±1.24- n^H$
From Reference 25, the following correction should be made:

7~ = 17.3H7+ .0109 for (c-5)

thus,

T = 77347+ (<OI09)(/t>-62) ±(I'2*)(.0I09)

T = 77 463 t 0.6135 °K

Temperature Difference

AT=Tw-TSat
(c "6)

AT= 82.50 -17. 46 ±V(.0l3)
x
+ (.

AT - 5.04- ± 0.15 °K
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Natural Convection

Ref (1) states that in natural convection the heat flux is propor-

tional to the temperature difference, Tw - T bulk, raised to the 1.25 - 1.33

power, depending on presence of turbulence. Assuming that after pre-

boi ling, the saturation temperature is equal to the bulk temperature, then

Zil— Ivj " Tbulk

— Jw " ISSAT

3/A = C, AT (C-7)

m = (ATf
fVA), (AT)* (c-8

)

From Run 1*+, two points in the natural convection region were chosen:

i*3 (<%),-^ (%)^ x[Ay(fir.)-ly (ATI)]

x _ 4*9 (*/*)• --h w*)*

Ay U-O-Jbq (AT2)

_ &f(.H8V-Ay(l.SSS)
Jag (176) -Xag(t.i3)

= A3S
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Exponent of n/A

Yamagata and Nishikawa proposed:

Q <* AT ^nx
(C-9)

where AT is (Tw-Tsat). A check on the values of a and b is calculated

below. The data used is from Figure 18.

From the curve with a single active cavity:

m= (ALL

(C-10)

at constant AT:

and,

thus,

or

•34 - JL

w2.SS

\r = 272

% = Cz ^T
x
^ib-

A.SS- Cz (3.6) (7)

(* = 0.338
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FIGURE 4. THERMOCOUPLE WELL LOCATIONS
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.5 12
Temperature Difference (°K)

FIGURE 10. NATURAL CONVECTION DATA SHOWING JUMP EFFECT
OBTAINED WITH SINGLE DRILLED CAVITIES
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Run 11-Mirror Finish (20 Minute Intervals
NOTE: Solid Symbols Indicate Nonboiling Data 7
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FIGURE 12. EFFECT ON THE BOILING CURVES OF DIFFERENT TIME

INTERVALS BETWEEN POWER LEVEL CHANGES
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Run 10-Mirror Finish
O Run 12-Kirror Finish

NOTE: Solid Symbols Indicate
Nonboiling Data
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Temperature Difference ( K)

FIGURE 13. CURVE SHOWING REPRODUCIBILITY OF BOILING
DATA USING MIRROR FINISH SURFACES
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FIGURE 14. MIRROR FINISH BOILING CURVE SHOWING OTHER

EXPERIMENTERS' MIRROR FINISH DATA
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FIGURE 15. EFFECT ON THE BOILING CURVE OF DIFFERENT
SIZES OF CYLINDRICAL CAVITIES
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FIGURE 16. EFFECT OF CAVITY GEOMETRY
ON THE BOILING CURVE
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FIGURE 17. EFFECT OF SPARK CUT CAVITIES

ON THE BOILING CURVE
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FIGURE 18. EFFECT OF NUMBER OF DRILLED

CAVITIES ON THE BOILING CURVE
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Temperature Difference (°K)

FIGURE 19. COMPARISON OF BOILING ONLY FROM ARTIFICIAL

CAVITIES TO NATURAL CONVECTION CURVES
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FIGURE 20. BOILING ONLY FROM ARTIFICIAL CAVITIES DATA SHOWING

CURVES OBTAINED USING YAMAGATA'S EQUATION
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